

SaintPetersburg OPEN 2025

May
20-23th
2025

BOOK of ABSTRACTS

12-th International School and Conference on
Optoelectronics, Photonics, Engineering and
Nanostructures

St. Petersburg, 2025

Copyright © by 2025 National Research University Higher School of Economics - St. Petersburg and individual contributors. All rights reserved.

No parts of this electronic publication may be multiple copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher. Single photocopies of single articles may be made for private study or research.

12-th International School and Conference “Saint Petersburg OPEN 2025” on Optoelectronics, Photonics, Engineering and Nanostructures carries on the tradition of annual conferences and schools organized at St Petersburg Academic University for students, PhD students and young scientists. More detailed information on the School and Conference is presented on <https://spb.hse.ru/spbopen/>

The Book of Abstracts includes abstracts of contributed works accepted for presentation at the Conference. The volume was composed by HSE University - St. Petersburg from electronic files submitted by the authors. Only minor technical corrections were made by the composers.

Chief Editor: A. E. Zhukov Published by HSE University - St. Petersburg, Soyuza Pechatnikov 16, 190121, St Petersburg.

Printed in Russian Federation

Head of Program Committee

Alexey Zhukov, HSE University, Russia

Program Committee

Andrey Lipovskii, Peter the Great University, Russia

Pavel Brunkov, Ioffe Institute, Russia

George Cirlin, Alferov University, Russia

Valentina Zhurikhina, Peter the Great University / HSE University – St. Petersburg, Russia

Natalia Kryzhanovskaya, HSE University – St. Petersburg, Russia

Sergey Makarov, ITMO University, Russia

Vladimir Dubrovskii, St. Petersburg State University, Russia

Head of Organizing Committee

Mikhail Mukhin, HSE University – St. Petersburg, Russia

Organizing Committee

Mikhail Maximov, Alferov University, Russia

Andrey Lipovskii, Peter the Great University, Russia

Eduard Moiseev, HSE University – St. Petersburg, Russia

Pavel Olenchuk, HSE University – St. Petersburg, Russia

Angelina Ivanova, HSE University – St. Petersburg, Russia

Support

**HSE UNIVERSITY
SAINT PETERSBURG**

Фонд академического развития НИУ ВШЭ – Санкт-Петербург

ООО «Специальные Системы. Фотоника»

<https://sphotonics.ru/>

Журнал «ФОТОНИКА» (PHOTONICS RUSSIA)

<https://www.photonics.su/>

Abstract. For n-p-n type bipolar transistor for voltage regulator were established characteristics (collector current, base current, common-emitter current gain) depending on total ionizing dose radiation using projected X-ray research complex. The functional dependencies of common-emitter current gain depending on total ionizing dose have been obtained.

Keywords: n-p-n type bipolar transistor, ionizing dose effects, X-ray irradiation.

Funding: This study was supported by the Russian Ministry of Science and High Education (agreement with the Russian Ministry of Science and High Education of 9 February 2023 No. 075-11-2023-008) using state support measures provided by the Russian Federation Government's Decree of 9 April, 2010 No. 218.

Introduction

It is known that investigation of the radiation hardness of voltage regulators to the total ionizing radiation dose effects is important goal for electronics [1]. In particular, as it was established earlier [2], there is possibility increase radiation hardness of voltage regulator using n-p-n type bipolar transistor included as additional element in its scheme. Therefore, study of n-p-n type bipolar transistor characteristics during ionizing radiation using X-ray research complex (XRC) is important scientific task.

Materials and Methods

The n-p-n type bipolar transistor was produced by BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) technology as element of some linear positive voltage regulator [2]. Investigation of n-p-n type bipolar transistor characteristics during ionizing radiation has been carried out using the earlier developed X-ray research complex. The functioning algorithm complex and the scheme of the developed complex are described in detail [3]. In particular, the characteristics study of n-p-n type bipolar transistor under radiation conditions was performed at following operating mode of XRC: anode voltage – 70 kV, anode current – 150 μ A, the rate of radiation dose accumulation was 150 un./s (un. – units of the DRI-0401 comparator including in XRC), distance between the X-ray tube window and the sample – 25 mm.

Results and Discussion

The n-p-n type bipolar transistor was connected according to the typical scheme for measuring of the collector current, base current and common-emitter gain. Transistor was operated under radiation in next electrical mode: the collector-emitter voltage is 16 V (Fluke 8845A multimeter) and two base currents values of 100 nA and 1 μ A (Keithley 6485 picoamperemeter), programmable power source is Rigol DP832. In Fig. 1 are presented the collector current I_C , base current I_B and common-emitter current gain β depending on total ionizing dose D for investigated n-p-n type bipolar transistor. As follows from Fig. 1 the value of collector current decrease with increasing of total ionizing dose for both base currents (100 nA and 1 μ A). The transistor's base current I_B (initial base current values: 100 nA and 1 μ A) lightly increase as total ionizing dose increase. The common-emitter current gain β for transistor at base current of 100 nA (common-emitter of 16 V) at first increase from 71, then reach the maximal value of 101 at dose of 24×10^3 un. and further decrease up to 9 at final dose of 800×10^3 un. In case when the base current is 1 μ A (common-emitter voltage is 16 V) common-emitter current gain decrease from 116 up to 14 at dose of 800×10^3 un. For engineers and developers of voltage regulators, that included same n-p-n type bipolar transistor, that work under radiation conditions it is important to know the analytical dependence of common-emitter current gain its transistor from radiation dose for calculation of addition resistance of compensation resistor in the feedback circuit for preventing of output voltage changing [2]. Therefore, based on regression

analyses methods, the analytical dependencies of the common-emitter gain β on the total ionizing dose D for n-p-n bipolar transistor (base current is 100 nA (Eq. 1) and 1 μ A (Eq. 2) consequently, collector-emitter voltage $V_{CE}=16$ V) are following form:

$$\beta(D) = -1.982 \times 10^{-7} \times D^3 + 4.278 \times 10^{-4} \times D^2 - 30.5 \times 10^{-2} \times D + 83.463, \quad (1)$$

$$\beta(D) = -3.101 \times 10^{-7} \times D^3 + 6.427 \times 10^{-4} \times D^2 - 43.8 \times 10^{-2} \times D + 117.075, \quad (2)$$

where β – the common-emitter gain, D – the total ionizing dose (10^3 un.).

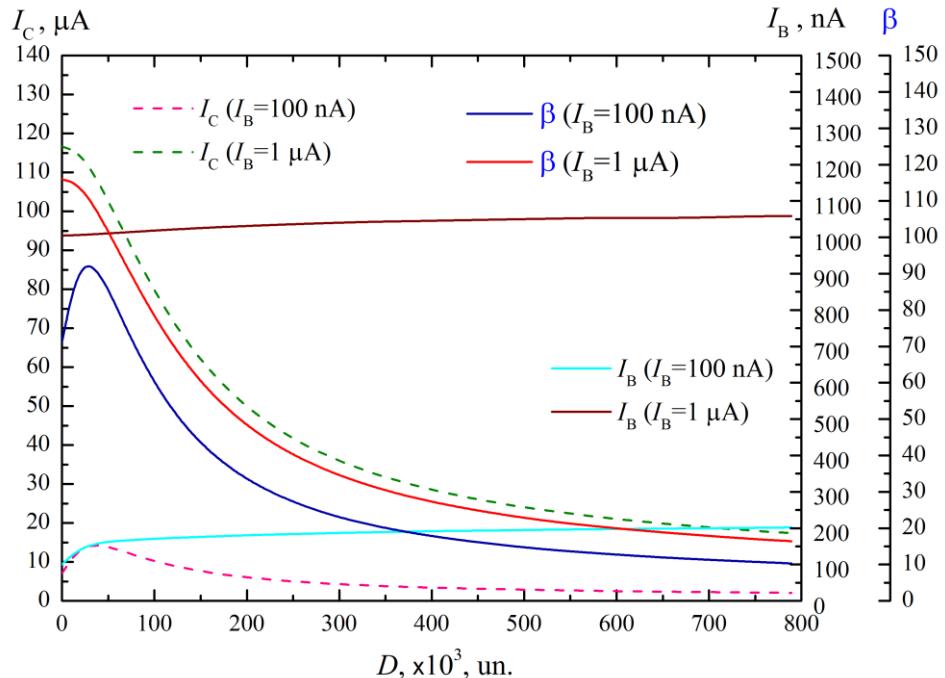


Fig. 1. The collector current I_C , base current I_B and common-emitter current gain β dependencies on total ionizing dose D for n-p-n type bipolar transistor (collector-emitter voltage $V_{CE}=16$ V).

Conclusion

The radiation hardness for n-p-n type bipolar transistor was studied using X-ray research complex. It is obtained dependencies of collector current, base current and common-emitter current gain from total ionizing dose radiation. For common-emitter current gain bipolar transistor's were established analytical dependencies on total ionizing dose necessary for improvement voltage regulators scheme functioning under radiation conditions.

Acknowledgments

The results of the Research and Development have been achieved during the implementation of the project «Integrated microcircuits of analog signal converters in metal-polymeric package of various types: development and mastering of technology, replacement of imported analogs and organization of serial production» (agreement with the Russian Ministry of Science and High Education of 9 February 2023 No. 075-11-2023-008) using state support measures provided by the Russian Federation Government's Decree of 9 April, 2010 No. 218.

REFERENCES

1. Gaul S. J., Vonna N., Voldman S. H., Morris W. H., Integrated Circuit Design for Radiation Environments, Wiley & Sons, Chichester, 2020.
2. Pilipenko K. S., Kulchenkov E. A., Rybalka S. B., Demidov A. A., Method for increasing of the voltage regulator radiation hardness, St. Petersburg State Polytechnical University Journal: Physics and Mathematics. 3.1 (17) (2024) 191–194.
3. Rybalka S. B., Demidov A. A., Kulchenkov E. A., Pilipenko K. S., Radiation behaviour study of linear voltage regulator, St. Petersburg State Polytechnical University Journal: Physics and Mathematics. 3.1 (17) (2024) 195–198.