

SaintPetersburg OPEN 2025

May
20-23th
2025

BOOK of ABSTRACTS

12-th International School and Conference on
Optoelectronics, Photonics, Engineering and
Nanostructures

St. Petersburg, 2025

Copyright © by 2025 National Research University Higher School of Economics - St. Petersburg and individual contributors. All rights reserved.

No parts of this electronic publication may be multiple copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher. Single photocopies of single articles may be made for private study or research.

12-th International School and Conference “Saint Petersburg OPEN 2025” on Optoelectronics, Photonics, Engineering and Nanostructures carries on the tradition of annual conferences and schools organized at St Petersburg Academic University for students, PhD students and young scientists. More detailed information on the School and Conference is presented on <https://spb.hse.ru/spbopen/>

The Book of Abstracts includes abstracts of contributed works accepted for presentation at the Conference. The volume was composed by HSE University - St. Petersburg from electronic files submitted by the authors. Only minor technical corrections were made by the composers.

Chief Editor: A. E. Zhukov Published by HSE University - St. Petersburg, Soyuza Pechatnikov 16, 190121, St Petersburg.

Printed in Russian Federation

Head of Program Committee

Alexey Zhukov, HSE University, Russia

Program Committee

Andrey Lipovskii, Peter the Great University, Russia

Pavel Brunkov, Ioffe Institute, Russia

George Cirlin, Alferov University, Russia

Valentina Zhurikhina, Peter the Great University / HSE University – St. Petersburg, Russia

Natalia Kryzhanovskaya, HSE University – St. Petersburg, Russia

Sergey Makarov, ITMO University, Russia

Vladimir Dubrovskii, St. Petersburg State University, Russia

Head of Organizing Committee

Mikhail Mukhin, HSE University – St. Petersburg, Russia

Organizing Committee

Mikhail Maximov, Alferov University, Russia

Andrey Lipovskii, Peter the Great University, Russia

Eduard Moiseev, HSE University – St. Petersburg, Russia

Pavel Olenchuk, HSE University – St. Petersburg, Russia

Angelina Ivanova, HSE University – St. Petersburg, Russia

Support

**HSE UNIVERSITY
SAINT PETERSBURG**

Фонд академического развития НИУ ВШЭ – Санкт-Петербург

ООО «Специальные Системы. Фотоника»

<https://sphotonics.ru/>

Журнал «ФОТОНИКА» (PHOTONICS RUSSIA)

<https://www.photonics.su/>

Experimental study of resistance of the integrated microcircuit of differential voltage comparator to ionizing radiation

E. A. Kulchenkov, D. S. Brundasov, A. A. Demidov, S. B. Rybalka[✉]

Bryansk State Technical University, 50 let Oktyabrya blvd. 7, Bryansk, 2410035, Russia
✉ sbrybalka@yandex.ru

Abstract. The results of the study of comparator IS-K1 and its foreign analogue TL331 for its hardness to ionizing radiation (IR) effect are presented. It is established that no thyristor effect found in the studied IR range.

Keywords: comparator, ionizing radiation, total ionizing dose effects.

Funding: This study was supported by the Russian Ministry of Science and High Education (agreement with the Russian Ministry of Science and High Education of 9 February 2023 No. 075-11-2023-008) using state support measures provided by the Russian Federation Government's Decree of 9 April, 2010 No. 218.

Introduction

Features of the design implementation of modern integrated microcircuits with a medium and high degree of integration determine the complicated nature of their radiation behavior under the influence of IR, in particular, by the effects of the total ionized dose and dose rate. Modern trends of miniaturization of the electronic base components impose its limitations during integrated microcircuits developing process and may increase the risk of generating, for example, the thyristor effect [1]. In this context, the goal of developing methods for determining the radiation hardness factors of the electronic base components, in particular, the IS-K1 comparator (foreign analogue of TL331), studied in this work, is important.

Materials and Methods

The integrated microcircuit of the IS-K1 voltage differential comparator in SOT-23-5 metal-polymeric package were manufactured by JSC "GRUPPA KREMNY EL" [2]. The total ionizing dose effects in the IS-K1 and its analogue TL331 [3] were studied using the X-ray complex RIK-0401: anode voltage – 70 kV, anode current – 200 μ A, the radiation absorbed dose rate was 297 un./s (un. – units of the DRI-0401 comparator). For study IS-K1 and TL331 to hardness of pulsed IR effect was used RADON-23 laser complex: the wavelength – 1064 nm; the radiation pulse energy – 120 mJ; the effective pulse duration – 10 ns; the beam diameter – 11 mm. The RIK-0401 and RADON-23 complexes were integrated into the developed research complex with the necessary equipment and measuring modular (PXI) equipment and tested in the study of the radiation hardness of linear voltage regulators [4].

Results and Discussion

During X-ray irradiation, IS-K1 and its analogue TL331 were in an active electrical mode at supply voltage of 16 V and load current of 1 mA. Studies performed using RIK-0401 X-ray complex showed that the electrical parameters for IS-K1 and TL331 are close and both integrated circuits demonstrate radiation hardness in the total ionized dose range up to $\sim 2300 \times 10^3$ un. During laser irradiation, IS-K1 and TL331 were in an active electrical mode: supply voltage of 15 V, reference voltage of 3V, input voltage of 2B, temperature of 20°C. Studies performed using RADON-23 laser complex showed that during the pulse of the IR there is operation interruption time of the IS-K1 and TL331 by the output voltage.

It was found that the thyristor effect is not observed in the studied samples IS-K1 and TL331 (see Fig. 1) both at a minimum energy density of 1 mJ/cm² (a, c) and at a maximum of 100 mJ/cm² (b, d). The interruption time of the IS-K1 operation was 8 μ s (energy density - 1 mJ/cm²) and 15 μ s (energy density - 100 mJ/cm²) correspondingly. Analogously, for TL331 the interruption time of operation was 5 μ s (energy density - 1 mJ/cm²) and 12 μ s (energy density - 100 mJ/cm²). Therefore, the registered interruption time values do not exceed the required parameters and the same values for IS-K1 are close to the measured values for the TL331.

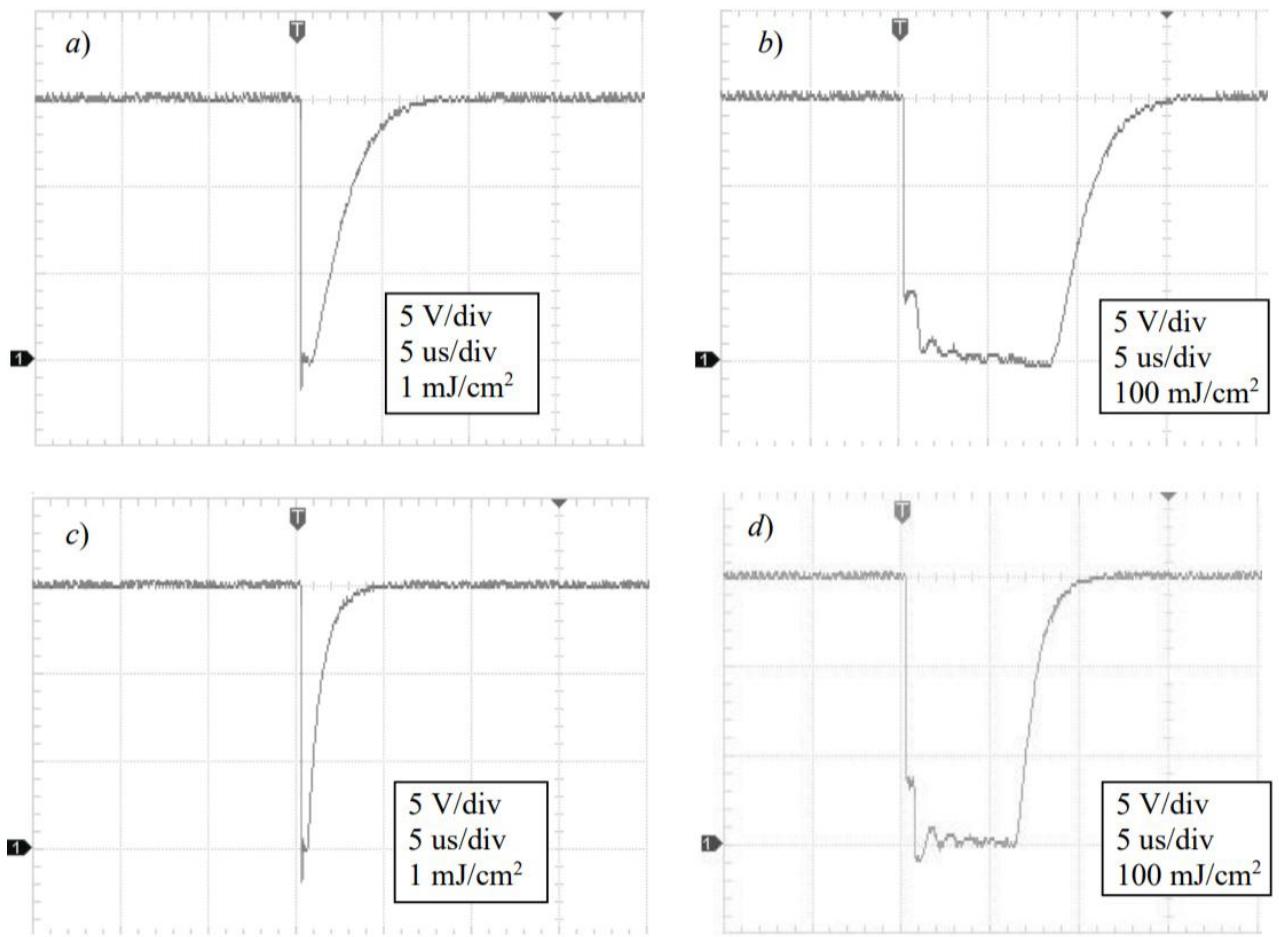


Fig. 1. The oscilloscopes of the IS-K1 (a, b) and TL331 (c, d) under the exposure of pulsed ionizing radiation (scale factor - 5 V/dev, 5 μ s/dev) with energy density: a, c - 1 mJ/cm^2 ; b, d - 100 mJ/cm^2 .

Conclusion

Thus, the used method for determining the radiation hardness indicators of the IS-K1 comparator in SOT-23-5 metal-polymeric package and its foreign analogue TL331 made it possible to diagnose the presence of ionizing radiation sensitive parameters. It was established that no thyristor effect found for comparators in the studied ionizing radiation interval.

Acknowledgments

The results of the Research and Development have been achieved during the implementation of the project «Integrated microcircuits of analog signal converters in metal-polymeric package of various types: development and mastering of technology, replacement of imported analogs and organization of serial production» (agreement with the Russian Ministry of Science and High Education of 9 February 2023 No. 075-11-2023-008) using state support measures provided by the Russian Federation Government's Decree of 9 April, 2010 No. 218.

REFERENCES

1. **Chumakov A. I.**, Radiation hardness of electronic components base products, NIYAU MIFI, Moscow, 2015.
2. JSC «GRUPPA KREMNY EL». URL: <https://group-kremny.ru>. Accessed Mar. 30, 2025.
3. Comparator, Single Channel, Open Collector, Low Power, Wide Supply Range TL331, TL331V, ONSEMI. URL: <https://www.onsemi.com/pdf/datasheet/tl331-d.pdf>. Accessed Mar. 30, 2025.
4. **Rybalka S. B., Demidov A. A., Kulchenkov E. A., Pilipenko K. S.**, Radiation behaviour study of linear voltage regulator, St. Petersburg State Polytechnical University Journal: Physics and Mathematics. 3.1 (17) (2024) 195–198.